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Abstract. Cloud properties are critical to our understanding
of weather and climate variability, but their estimation from
satellite imagers is a nontrivial task. In this work, we aim
to improve cloud detection, which is the most fundamental
cloud property. We use a neural network applied to Visible
Infrared Imaging Radiometer Suite (VIIRS) measurements
to determine whether an imager pixel is cloudy or cloud-
free. The neural network is trained and evaluated using 4
years (2016–2019) of coincident measurements between VI-
IRS and the Cloud-Aerosol Lidar with Orthogonal Polar-
ization (CALIOP). We successfully address the lack of sun
glint in the collocation dataset with a simple semi-supervised
learning approach. The results of the neural network are then
compared with two operational cloud masks: the Continuity
MODIS-VIIRS Cloud Mask (MVCM) and the NOAA Enter-
prise Cloud Mask (ECM).

We find that the neural network outperforms both opera-
tional cloud masks in most conditions examined with a few
exceptions. The largest improvements we observe occur dur-
ing the night over snow- or ice-covered surfaces in the high
latitudes. In our analysis, we show that this improvement is
not solely due to differences in optical-depth-based defini-
tions of a cloud between each mask. We also analyze the
differences in true-positive rate between day–night and land–
water scenes as a function of optical depth. Such differences
are a contributor to spatial artifacts in cloud masking, and we
find that the neural network is the most consistent in cloud
detection with respect to optical depth across these condi-
tions. A regional analysis over Greenland illustrates the im-
pact of such differences and shows that they can result in

mean cloud fractions with very different spatial and tempo-
ral characteristics.

1 Introduction

Clouds serve many critical roles in the earth’s weather and
climate system and are one of the largest sources of un-
certainty in future climate scenarios (Stocker et al., 2013).
Determining their presence in current observational records
is a fundamental first step in understanding their variability
and impact. Polar-orbiting satellite imagers such as the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS; Cao et al.,
2013) offer frequent views of global cloud cover at high spa-
tial resolution. However, cloud detection from passive visi-
ble and infrared observations is a nontrivial problem. This
is particularly true for clouds with low optical depths and
clouds above cold and visibly reflective surfaces (Ackerman
et al., 2008; Holz et al., 2008). These qualifications on imager
cloud detection make it difficult to construct confident ob-
servational analyses of cloud variability from passive satel-
lite instruments, especially in the polar regions. As a result,
many differences exist between cloud climate records made
with different algorithms or sensors with different capabili-
ties (Stubenrauch et al., 2013).

Machine learning (ML) has become a popular tool for
statistical modeling in earth sciences, including the use of
both supervised and unsupervised methods. Supervised ML
methods in the earth sciences can require large numbers
of training data often created from physically based mod-
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els, obtained from manual labeling, or observed from other
instrument platforms. These approaches have been exten-
sively used in characterizing the surface and atmosphere
from remote sensing instruments. A sample of popular ML
approaches (and their applications) used in satellite meteo-
rology include naive Bayesian classifiers (Uddstrom et al.,
1999; Heidinger et al., 2012; Cintineo et al., 2014; Bulgin
et al., 2018), random forests (Kühnlein et al., 2014; Thampi
et al., 2017; Wang et al., 2020), and neural networks (Minnis
et al., 2016; Håkansson et al., 2018; Sus et al., 2018; Wim-
mers et al., 2019; Marais et al., 2020).

In this analysis, we develop a neural network cloud mask
(NNCM) that uses the moderate-resolution channels from
VIIRS to determine whether a given imager pixel contains
a cloud or is cloud-free. We train the neural network using
observations from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP; Winker et al., 2009). Observations
from CALIOP are often used to validate cloud masks and
cloud property estimates due to the instrument’s ability to
retrieve vertical profiles of the atmosphere and characterize
clouds with low optical depth. Additionally, its placement in
the A-train constellation makes it a convenient reference for
Moderate Resolution Imaging Spectroradiometer (MODIS)
cloud property validation (Holz et al., 2008). The Suomi Na-
tional Polar-orbiting Partnership (SNPP) VIIRS instrument,
despite not being in the A-train constellation, makes spa-
tially and temporally coincident observations with CALIOP
roughly every 2 d. Thus, there is opportunity for matching
observations between these two sensors with some limita-
tions. One such limitation is that the range of atmospheric
and surface conditions sampled by CALIOP do not necessar-
ily match those of SNPP-VIIRS. Conditions where colloca-
tions between these two sensors occur are even less represen-
tative and do not contain instances of significant sun glint. In
this work we demonstrate how a very simple semi-supervised
learning approach can ameliorate this specific limitation.

There are several recent applications of ML in charac-
terizing clouds from imager observations that use CALIOP
as a source of labeled data. Perhaps most relevant is Wang
et al. (2020), in which several random forest (RF) models are
trained to identify the presence and phase of clouds from VI-
IRS observations under somewhat idealized conditions (spa-
tially homogeneous and low aerosol optical depths). In such
conditions, the RF models demonstrated improvements in
cloud masking and cloud phase determination over current
algorithms. Håkansson et al. (2018) use CALIOP as a train-
ing source for estimating MODIS cloud-top heights with
precomputed spatial features, MODIS brightness tempera-
tures, and numerical weather prediction (NWP) temperature
profiles using a neural network. They additionally demon-
strate the ability to accurately estimate cloud-top heights
with channels only available on sensors such as the Ad-
vanced Very High Resolution Radiometer (AVHRR) and VI-
IRS. Similarly, Kox et al. (2014) trained a neural network
with CALIOP to determine the presence of cirrus clouds and

estimate their optical depth and cloud-top height from the
Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
observations. The Community Cloud retrieval for CLimate
(CC4CL; Sus et al., 2018) also uses neural-network-based
approaches for imager cloud detection. The CC4CL neural
network models are trained with collocations between the
Advanced Very-High Resolution Radiometer (AVHRR) and
CALIOP. Adjustments are applied to shared MODIS and Ad-
vanced Along-Track Scanning Radiometer (AATSR) chan-
nels (accounting for differences in spectral response func-
tions) to ensure the approaches generalize beyond AVHRR
to those imagers as well. While the majority of these applica-
tions for cloud property estimates are relatively recent, there
were successful implementations of ML approaches well be-
fore the launch of CALIOP using manually labeled scenes
(Welch et al., 1992).

Our approach aims to improve upon the existing litera-
ture in several ways. Significant effort has gone into deter-
mining useful spectral characteristics in the development of
past imager cloud masks. Still, it is possible that not all rel-
evant variability is being exploited, particularly that which
involves three or more channels. Rather than relying on pre-
computed spectral or textural features, we allow a neural net-
work to learn relevant features from a local 3px× 3px im-
age patch from all 16 moderate-resolution VIIRS channels.
This necessitates a relatively large neural network architec-
ture in order to exploit the variability in these observations
to discriminate cloudy from cloud-free scenes. We train the
model without filtering CALIOP collocations to encourage
more reliable predictions under non-ideal conditions. Addi-
tionally, we specifically address issues caused by the lack of
sun glint scenes in collocations between SNPP VIIRS and
CALIOP. This specific implementation does not require sur-
face temperature, surface emissivity, the use of clear-sky ra-
diative transfer modeling, snow cover, or ice cover informa-
tion. The only ancillary data used is a VIIRS-derived land–
water mask in the level 1 geolocation product. The NNCM
uses a single model for all surface types and solar illumina-
tion conditions and, in some respects, greatly simplifies the
processing pipeline for imager cloud masking.

In this analysis, we demonstrate that a neural network
cloud mask (NNCM) can outperform two operational VIIRS
cloud masks in detecting clouds identified by CALIOP. In
particular, we note large improvements at night in the mid-
dle and high latitudes. Since cloud masks may have differ-
ing definitions of what substantiates a cloud, we evaluate the
performance of each approach after removing clouds above
an increasing lower optical depth threshold. The usefulness
of the predicted probabilities as a proxy for uncertainties is
assessed. We also show an example of how differences in
cloud detection ability can result in vastly different spatial
and temporal characteristics of regional mean cloud cover
assessments in the polar regions.

Atmos. Meas. Tech., 14, 3371–3394, 2021 https://doi.org/10.5194/amt-14-3371-2021



C. H. White et al.: Evaluation of neural network cloud detection 3373

Table 1. The band, spectral range, and units of all 16 moderate-
resolution VIIRS channels. Each channel is expressed as a reflec-
tivity (Refl.) or a brightness temperature (BT).

Band Spectral range (µm) Units

M1 0.400–0.421 Refl.
M2 0.436–0.451 Refl.
M3 0.477–0.496 Refl.
M4 0.541–0.561 Refl.
M5 0.662–0.680 Refl.
M6 0.738–0.752 Refl.
M7 0.843–0.881 Refl.
M8 1.225–1.252 Refl.
M9 1.368–1.383 Refl.
M10 1.571–1.631 Refl.
M11 2.234–2.280 Refl.
M12 3.598–3.791 BT [K]
M13 3.987–4.145 BT [K]
M14 8.407–8.748 BT [K]
M15 10.234–11.248 BT [K]
M16 11.405–12.322 BT [K]

2 Instruments and data

2.1 VIIRS

VIIRS is a polar-orbiting visible, near-infrared, and infrared
imager on board the S-NPP and NOAA-20 satellites. The
swath width of VIIRS is roughly 3060 km, allowing for at
least twice-daily views of any given ground location and
more frequent views at higher latitudes. VIIRS altogether
measures top-of-atmosphere radiation for 22 different chan-
nels. This is made up of five imaging channels (I-bands) with
a nadir resolution of 375 m and 16 moderate-resolution chan-
nels (M-bands) with a nadir resolution of 750 m (Table 1).
VIIRS has an additional day–night band (DNB) for noctur-
nal low-light applications. This work is focused entirely on
the 16 moderate-resolution channels and does not include the
use of the higher-resolution I-bands or the DNB. Further-
more, we only consider VIIRS data from S-NPP, which has
an equatorial crossing time of 13:30 local solar time.

2.2 CALIOP

CALIOP is polar-orbiting lidar taking near-nadir ob-
servations on board the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite,
which also has an equatorial crossing time of roughly 13:30
local solar time. CALIOP measures at wavelengths of 1064
and 532 nm with a horizontal resolution of 333 m. The indi-
vidual lidar footprints are aggregated in the creation of both
the 1 and 5 km CALIOP cloud layer products. CALIOP’s
ability to characterize optically thin cloud layers makes it a
suitable validation source for imager cloud masking. While
CALIOP, in many respects, is the more appropriate instru-

ment for accurately estimating cloud properties (including
cloud detection), its spatial sampling is extremely sparse rel-
ative to VIIRS and other imagers. This motivates our goal of
extending CALIOP’s cloud detection ability to passive im-
ager measurements.

2.3 MVCM and ECM

Current operational cloud masks for VIIRS include the
NOAA Enterprise Cloud Mask (ECM; Heidinger et al.,
2012, 2016) and the Continuity MODIS-VIIRS Cloud Mask
(MVCM; Frey et al., 2020). The ECM algorithm was orig-
inally designed for AVHRR climate applications and has
since been extended to a wide range of geostationary and
polar-orbiting imagers, including VIIRS. This approach is
based on several naive Bayesian classifiers that are each
trained specifically for different surface types. This approach
is similarly trained using CALIOP collocations with VIIRS
and makes probabilistic predictions of cloudy or cloud-free
pixels. A key advantage of the ECM’s naive Bayesian ap-
proach is that certain predictors can be removed or turned off
(such as visible channels during the night). Due to the sim-
plicity of naive Bayesian classifiers, the ECM is overall more
interpretable than our proposed neural network.

The MVCM has heritage with the MODIS cloud mask
(Ackerman et al., 2010) and has been adjusted to only use
channels available on both VIIRS and MODIS. Obtaining
continuity in cloud detection between the two imagers is a
specific goal of the MVCM. The MVCM has a collection
of cloud tests, each with specified low-confidence and high-
confidence thresholds used in a fuzzy-logic approach. The
specific tests that are applied are determined by solar illu-
mination and the surface type. The clear-sky confidence val-
ues imparted by each applied test are combined to produce
a preliminary overall clear-sky confidence value which can
then be modified by clear-sky restoral tests. The MVCM’s
reliance on physically based reasoning also make its predic-
tions relatively interpretable compared to our neural network
approach.

2.4 Collocation methodology

The labeled data that are used to train and evaluate the per-
formance of the neural network come from version 4.2 of the
1 km CALIOP cloud layer product (Vaughan et al., 2009).
A vertical profile is determined to be cloudy when the num-
ber of cloud layers is equal to or exceeds 1. Otherwise the
profile is assumed to be cloud-free. The CALIOP labels are
set to 0 for cloud-free observations and 1 for cloudy obser-
vations. Other CALIOP information such as the cloud-top
pressure and cloud feature type is used in the validation of
the cloud masks. Cloud optical depth is obtained from the
5 km CALIOP cloud layer product since it is unavailable at
the 1 km resolution. There are difficulties in matching satel-
lite imager measurements with CALIOP. Many of these is-
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sues are discussed at length in Holz et al. (2008) and include
differences in spatial footprint, viewing angle, the observa-
tion time between the two instruments, and the horizontal
averaging applied within the CALIOP products to increase
their signal-to-noise ratio.

Collocations between SNPP VIIRS and CALIOP are ob-
tained by performing a nearest-neighbors search between the
1 km CALIOP cloud layer product and the 750 m (at nadir)
VIIRS observations. A parallax correction is then applied to
account for pixels with high-altitude clouds that are observed
at oblique viewing angles by VIIRS. The details of the paral-
lax correction are identical to those of Holz et al. (2008). Col-
locations with times that differ by more than 2.5 min are re-
moved. Relative to Heidinger et al. (2016), who use a limit of
10 min, this is a particularly strict requirement that severely
limits both the number of possible collocations between these
instruments and the range of viewing conditions sampled.
We make this choice because the time difference between
observations is a critical factor in the representativeness of
a CALIOP profile for a given imager pixel. This is particu-
larly true for small clouds that occupy a horizontal area sim-
ilar to or smaller than a single VIIRS pixel in environments
with high wind speeds. Collocations are found for these in-
struments from January 2016 through December 2019. Some
gaps in the collocation dataset exist and are primarily due
to the availability of CALIOP data products. Following the
recommendations from the CALIPSO team, we remove all
CALIOP profiles that contain low-energy laser shots with
532 nm laser energies less than 80 mJ. This results in a rela-
tive sparsity of collocations over central South America after
mid-2017. In total, roughly 27.1 million collocations were
collected for this study with the above requirements.

2.5 Neural network inputs

The observations used as input into the neural network come
from the moderate-resolution channels (M1–M16; Table 1)
obtained from the NASA processing of SNPP VIIRS. All
channels are expressed either as a reflectance or brightness
temperature. In addition to the VIIRS channels we also in-
clude a binary land–water mask, solar zenith angle, sun glint
zenith angle, and the absolute value of latitude. The binary
land–water mask is created from an eight-category land–
water mask included the in the VNP03MOD geolocation
product, which includes land, coastline, and various types
of water surfaces. Our binary mask is created by grouping
together all water surfaces as a single water category and
grouping together land and coastline as a single land cate-
gory. Sun glint zenith angle is the angle between the surface
normal to the estimated specular point (the point of maxi-
mum sun glint) and atmospheric path viewed by VIIRS. For
each of the 20 inputs, a 3px× 3px array is extracted and is
used to predict the cloudy or cloud-free label at the center
pixel.

Table 2. The VIIRS/CrIS fusion channels used in the pseudo-
labeling model. All channels are expressed as brightness temper-
atures.

VIIRS/CrIS Spectral range of MODIS
fusion channel equivalent channel (µm)

MODIS 27 6.535–6.895
MODIS 28 7.175–7.475
MODIS 29 8.400–8.700
MODIS 30 9.580–9.880
MODIS 31 10.780–11.280
MODIS 32 11.770–12.270
MODIS 33 13.185–13.485
MODIS 34 13.485–13.785
MODIS 35 13.785–14.085
MODIS 36 14.085–14.385

The VIIRS/Cross-track Infrared Sounder (CrIS) fusion
channels (Weisz et al., 2017) are estimates of MODIS-
like channels using coarse-resolution measurements from the
CrIS that are interpolated to match the moderate-resolution
channels of VIIRS. A subset of the VIIRS/CrIS fusion chan-
nels without solar contributions (Table 2) are used in a
pseudo-labeling model for sun glint scenes (described later in
Sect. 3.1), but these are not used in the final NNCM model.
Table 3 summarizes which inputs are used for the NNCM,
a neural network without pseudo-labeling, and the pseudo-
labeling model.

2.6 Dataset splitting

In statistical modeling it is important to ensure independence
between the training, validation, and testing datasets. The
CALIOP cloud layer product’s feature identification algo-
rithm often relies on horizontal averaging to detect cloud lay-
ers of low optical depth. This averaging increases the signal-
to-noise ratio and allows for more accurate identification of
such features. As a result, clouds with low optical depth may
have their attributes replicated across neighboring CALIOP
profiles. As pointed out in Håkansson et al. (2018), separat-
ing imager and CALIOP collocations by random sampling
would result in three nearly identical datasets and would
yield a model that greatly over-fits. To avoid this, we strat-
ify our collocations by year into our training set that con-
sists of 14.3 million collocations from 2016 and 2018, a val-
idation set consisting of 5.7 million collocations from 2017,
and our testing set consisting of 7.1 million collocations from
2019. The training set is what is supplied to the model during
the training stage. The validation dataset is used for hyperpa-
rameter tuning during model development and early stopping
during the training stage. The testing set is used to provide es-
timates of model performance, which we analyze in Sect. 4,
and is not seen by the model during the training or hyperpa-
rameter tuning stages.
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Table 3. Summary of the inputs included in the three neural networks used in this work. See the main text for description of each model.

Inputs NNCM Neural network Pseudo-labeling
without pseudo-labels model

M1–M13 X X
M14–M16 X X X
MODIS 27–MODIS 36 X
|Latitude| X X X
Solar zenith angle X
Sun glint angle X
Land–water mask X X X

The spatial and seasonal distribution of these collocations
can be seen in Fig. 1. There are slight differences in spa-
tial sampling between the testing dataset and the validation
and training datasets. We expect that this is due to a combi-
nation of the strict 2 min time difference we require of the
collocations and the exit of CALIPSO from the A-train in
late 2018 (Braun et al., 2019). We select 2019 for our testing
dataset since it provides the most spatially and temporally
complete dataset. The years 2016 and 2018 are used in our
training dataset since they offer the next largest number of
collocations. We judged that 2017 was the least spatially and
temporally representative, hence its use only as a validation
dataset for hyperparameter tuning and early stopping during
training.

2.7 CALIOP data preprocessing

A common preprocessing step when training imager cloud
masks with CALIOP observations is to filter the collocations
using several heuristics in order to infer when CALIOP cloud
detection is unreliable or unrepresentative of the correspond-
ing imager pixel. Heidinger et al. (2012) filters AVHRR col-
locations so that only CALIOP observations where the 5 km
along-track cloud fraction is equal to 0 % or 100 % are in-
cluded. Holz et al. (2008) only retained MODIS pixels where
all collocated CALIOP retrievals are identical. Wang et al.
(2020) require that both the 1 and 5 km CALIOP cloud layer
products agree and that five consecutive 1 km CALIOP pro-
files agree, and they additionally remove profiles with high
aerosol optical depths. Many of these filters achieve a similar
result in requiring that CALIOP profiles, to a varying degree,
are spatially homogeneous with regards to the presence of
clouds. This filtering is often applied to remove fractionally
cloudy profiles or profiles where the clouds may have moved
out of the corresponding imager pixel. Karlsson et al. (2020)
employ an approach that filters AVHRR and CALIOP collo-
cations on the basis of cloud optical depth. This is done in an
iterative fashion in order to determine the lower optical depth
threshold in which their cloud masking method can reliably
detect clouds.

In our approach, we intentionally do not perform any of
the above preprocessing steps to our training dataset. This

is because we include a substantial amount of spatial infor-
mation in our neural network inputs. If such a spatial filter
were applied to the CALIOP data, then cloud edges and small
clouds (often boundary layer clouds) would rarely occur in
our training dataset. This would yield a large amount of bias
in a model that accounts for any amount of spatial variabil-
ity and could cause it to generalize poorly. Alternatively, we
apply a spatial filter to only our testing dataset to create a
second filtered testing dataset that we can evaluate our mod-
els against. This allows us to evaluate the performance of our
cloud masking model against others using only the most re-
liable CALIOP collocations without biassing any model that
considers spatial variability. Additionally, we can analyze the
performance of our neural network approach in fractionally
cloudy scenes using the unfiltered testing dataset with the
knowledge that these collocations may be overall less reli-
able. The specific filter we apply to our testing dataset re-
quires that five consecutive 1 km profiles agree. This spatial
filter creates a filtered testing dataset of 5.9 million colloca-
tions compared to the unfiltered testing dataset of 7.1 million
collocations. In no way does this filter affect the training or
validation data.

3 Methods

3.1 Pseudo-labeling procedure

A general concern in using statistical models such as neu-
ral networks is the ability for them to generalize to unseen
data. One such scenario in this dataset is sun glint. Sun glint
is the specular reflection of visible light usually over water
surfaces which results in very large visible reflectivity for
both cloudy and cloud-free observations. In our dataset of
VIIRS and CALIOP collocations, we never observe any sub-
stantial amount of sun glint. Thus, without accounting for
sun glint, any statistical model will likely fail to make a rea-
sonable assessment of cloud cover under these conditions.
Often, this results in erroneously predicting cloud cover in
sun glint regions due to their high visible reflectivity. In the
ECM, sun glint is handled by turning off cloud tests that use
visible and shortwave infrared channels with solar contribu-
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Figure 1. Spatial distribution of the unfiltered S-NPP VIIRS and CALIOP collocations for the (a) training, (b) validation, and (c) testing
datasets. Panel (d) indicates the seasonal distribution of collocations for each unfiltered dataset. Note the difference in color bar limits
between (a), (b), and (c).

tions. In the MVCM, this is handled by decision paths that
use visible channels to detect clear-sky pixels specifically in
sun glint regions. The Aqua MODIS and S-NPP VIIRS cli-
mate data record continuity cloud properties products (CLD-
PROP; which use the MVCM) also use a clear-sky restoral
algorithm (Platnick et al., 2017) in an attempt to remove er-
roneously cloudy pixels, but it is not included in the MVCM
output.

We aim to overcome this limitation by using a simple
semi-supervised learning approach called pseudo-labeling
(Lee, 2013). Pseudo-labeling is the approach of using a
model to make predictions on unlabeled data, assuming that
some or all of these predictions are correct, and adding these
predictions to the original training dataset as if they were true
labels. In our application, the pseudo-labeling model only
uses VIIRS and VIIRS/CrIS fusion channels unaffected by
sun glint, and the final NNCM model uses all VIIRS channels
and no VIIRS/CrIS fusion channels. Stated simply, adding
these pseudo-labels to the training dataset incentivizes the
final NNCM model to match the predictions of an infrared-
only model in areas with sun glint.

We first train a pseudo-labeling neural network model us-
ing only channels that are unaffected by sun glint. For VIIRS,
these channels are M14, M15, and M16. In addition to these
VIIRS channels, we also use a subset of the VIIRS/CrIS fu-
sion estimates of MODIS-like channels (MODIS bands 27–
36; Table 2) that are similarly unaffected by sun glint, the bi-
nary land–water mask, and the absolute value of latitude. The
VIIRS/CrIS channels are included in an effort to make up
for the loss of the shortwave and shortwave infrared VIIRS
bands (M1–M13). After training, the pseudo-labeling model

is then used to make predictions for SNPP VIIRS scenes with
sun glint of angles of less than 40◦ over water. For this pur-
pose, we select scenes from the 15th day of every month in
2018 (a year included in our training dataset). This is done
to ensure even representation of seasons and combinations
of sun glint angle and latitude. Of these predictions, roughly
1 million pseudo-labels are randomly sampled without re-
placement and added to the original training and validation
datasets as if they were obtained from CALIOP. No pseudo-
labels are added to the testing dataset. The class probabilities
for the pseudo-labeled examples are not required to be equal
to 0 or 1. Instead, they are left unmodified in an effort to pro-
mote more reliable class probabilities in pixels affected by
sun glint from the final neural network model.

Before discussing the details of the NNCM, we train a
naive model on only CALIOP data, ignoring the fact that sun
glint scenes are not represented in order to better illustrate
the purpose of pseudo-labeling. The neural network with-
out pseudo-labels does not include solar zenith angle and sun
glint zenith angle since these values for sun glint scenes are
outside the range of values for these variables included in
CALIOP collocations. The inputs to each model are summa-
rized in Table 3.

In Fig. 2 we qualitatively compare the predictions of
the NNCM (that is trained with pseudo-labels) to a neu-
ral network model that is not trained with these pseudo-
labels. Without pseudo-labeling, the high visible reflectiv-
ity causes the neural network model to overpredict cloud
cover in these regions. Even areas far away from the spec-
ular point with only marginal sun glint are significantly im-
pacted. This behavior is not surprising because sun glint is
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an out-of-domain prediction for the neural network without
pseudo-labels. This issue is somewhat remedied by includ-
ing pseudo-labels in training the NNCM (Fig. 2d). Qualita-
tively, the ECM (Fig. 2f) appears to be the least affected by
sun glint and most able to correctly discriminate cloud-free
from cloudy in the sun glint region. The MVCM (Fig. 2e)
overpredicts cloud cover directly over the specular point but
captures small cloud variability surrounding it. The NNCM
makes relatively realistic predictions compared to without
pseudo-labeling. However, it does not capture small cloud
variability around the specular point to the same degree as
the ECM. The pseudo-labeling model likely has low skill in
such conditions due to the lack of visible channels and the
low contrast between a low-level fractionally cloudy pixel
and the background. There appears to be little disagreement
between the cloud masks for the larger, more reflective, and
colder cloud features.

To summarize, there are three neural network models
trained in this work: (1) the NNCM, (2) a neural network
without pseudo-labels, and (3) the pseudo-labeling model.
The NNCM is the approach we are proposing and evaluating.
The neural network without pseudo-labels and the pseudo-
labeling model are developed in support of the NNCM. The
only purpose of the neural network without pseudo-labels is
to illustrate the need for pseudo-labeling in Fig. 2. The pur-
pose of the pseudo-labeling model is to provide training la-
bels for the NNCM in sun glint scenes. Only the results from
the NNCM are analyzed in Sects. 4 and 5. In the follow-
ing section we describe the details behind how the NNCM is
trained.

3.2 Neural network description and training details

We use a simple neural network model that consists of fully
connected (FC) layers, leaky rectified linear unit activations
(Leaky ReLU), dropout (Srivastava et al., 2014), and a sig-
moid activation as the last layer. The architecture of this
model is described in Table 4. All except the last FC layer
are followed by Leaky ReLU activation and 2.5 % dropout.
Dropout is a neural network regularization technique where
a fraction of the units in each layer are randomly ignored and
helps prevent over-fitting. For each VIIRS pixel, a centered
3px× 3px image patch from all 20 inputs is passed to layer
group 1 (LG1) of Table 4 and through each layer group suc-
cessively until the last sigmoid activation is reached. The last
sigmoid activation bounds the output of the model between 0
(indicating cloud-free) and 1 (indicating cloudy).

The model in Table 4 is the result of a grid search over a
fairly small set of hyperparameters. We tested several config-
urations by multiplying the number of units in all but the last
FC layer by 0.25, 0.5, 1.0, and 2.0. We also tested dropout
rates of 0 %, 2.5 %, 5 %, and 10 % and Leaky ReLU vs.
ReLU activations. This results in 32 model configurations,
which are each trained and evaluated three times with dif-
ferent randomly initialized weights. Two configurations with

double the number of units in the FC layers reported slightly
higher validation accuracies compared to those of Table 4 (a
difference of 0.05 %). However, we judged that the increase
in prediction time was not worth the very small gains in per-
formance. Across all model configurations, Leaky ReLU ac-
tivation was better than ReLU. Dropout percentages larger
than 2.5 % only helped when models had a twice the number
of units in the FC layers.

Data augmentation is a common method to artificially
increase the diversity of examples in the training dataset
(Shorten and Khoshgoftaar, 2019). This is often performed
by creating plausible alternative views of training examples.
Data augmentation methods have been critical in improving
performance on widely used computer vision benchmarks
(Zhang et al., 2018, for example). In our case, we are lim-
ited by the chosen shape and nature of our input to the kinds
of augmentations we can apply to our training dataset. For
instance, we cannot reasonably scale, zoom, or translate (all
common augmentations applied to images) a 3px× 3px im-
age patch where the center values have special meaning. Dur-
ing training, we apply uniformly random 90◦ rotations (0◦,
90◦, 180◦, 270◦), horizontal flips, and vertical flips.

J =−
(
y log ŷ+ (1− y) log(1− ŷ)

)
(1)

The neural network is trained to minimize binary cross-
entropy, J (Eq. 1), where y is the label, and ŷ is the pre-
dicted probability. All inputs are scaled to have zero mean
and unit variance, with the means and standard deviations
calculated from the training dataset. The Adam optimizer is
used with its suggested default parameters (Kingma and Ba,
2015), and we did not notice any substantial changes in the
final model when other optimization algorithms were used.
The learning rate is initially set to 5× 10−3, with a mini-
batch size of 4098 examples. This value is selected using a
learning rate range test (Smith, 2017). After each epoch, the
model is evaluated on the validation set. The learning rate is
reduced by a factor of 10 when the performance on the val-
idation dataset does not improve for three epochs. This con-
tinues until a learning rate of 1× 10−6 is reached. Training
is stopped once the validation performance does not improve
for five epochs. Both the final model and the pseudo-labeling
model are trained in the same way with the same set of hy-
perparameters. However, since the input size is smaller, the
pseudo-labeling model has fewer parameters in the first fully
connected layer. Using the same set of hyperparameters is not
necessarily ideal since the pseudo-labeling model may have
a different set of optimal hyperparameters. We did not per-
form a separate hyperparameter grid search due to the large
computational cost.

The development of the NNCM and the following analysis
was performed using the TensorFlow (Abadi et al., 2016),
NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),
and Matplotlib (Hunter, 2007) Python libraries.
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Figure 2. Comparison of the neural network cloud mask without pseudo-labels (c), the NNCM (d), the MVCM (e), and the ECM (f). Also
shown are band M5 with a central wavelength of roughly 0.67 µm (a) and band M15 with a central wavelength of roughly 10.8 µm (b).

4 Results

4.1 Validation with CALIOP

When evaluating classification models many performance
metrics need to be viewed in the context of the class distri-
bution. Otherwise, quantities such as accuracy (ACC; Eq. 4)
and true-positive rate (TPR; Eq. 2; equivalent to probability
of detection) can be misleading. For example, a trivial bi-
nary classification model that predicts only the positive class
achieves 0.9 ACC and 1.0 TPR in a dataset with a positive
and negative class distribution of 0.9 and 0.1, respectively.
Thus, while metrics like ACC and TPR are useful, they must
be interpreted within the context of the mean cloud fraction.

We calculate the mean cloud fraction for all VIIRS and
CALIOP collocations in our 2019 testing dataset over differ-
ent surface types for both day and night (Fig. 3). For each
instance, a cloud fraction value is reported from CALIOP,

the NNCM, the MVCM, and the ECM. Daytime cloud frac-
tions include collocations where the solar zenith angle is less
than 85◦. Land and water surface types are determined from
the VIIRS level 1 geolocation data product. The presence of
sea ice, snow, and permanent snow (primarily Greenland and
Antarctica) is determined from the National Snow and Ice
Data Center sea ice index included with the CALIOP cloud
layer products. The cloud fraction estimates are not necessar-
ily representative of the true cloud fraction over these surface
types since they only represent VIIRS and CALIOP colloca-
tions for 2019. Instead, we use them to compare the relative
tendencies of each cloud mask to generally overestimate or
underestimate cloud cover for a given surface type.

The NNCM cloud fractions match closely to those of
CALIOP, with the exception of an underestimate of 7 % over
nighttime permanent snow. In all other instances the NNCM
reports cloud fractions that are within 3 % of CALIOP. The
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Table 4. The architecture of the NNCM. LG refers to layer group and is used to describe the collection of layers in each row. FC (x) refers
to the fully connected layers, where x is the number of units in each layer. Similarly, dropout (x) refers to the fraction of inputs to which
dropout is applied.

Layer group (LG) Layer type Input size Output size

LG1 FC (200), Leaky ReLU, dropout (2.5 %) 180 (3× 3× 20) 200
LG2 FC (200), Leaky ReLU, dropout (2.5 %) 200 200
LG3 FC (100), Leaky ReLU, dropout (2.5 %) 200 100
LG4 FC (50), Leaky ReLU, dropout (2.5 %) 100 50
LG5 FC (25), Leaky ReLU, dropout (2.5 %) 50 25
LG6 FC (1), Sigmoid 25 1

MVCM predicts smaller mean global cloud fraction com-
pared to CALIOP. This seems to be due to a combination of
slightly overestimating cloud cover over daytime water and
underestimating cloud cover elsewhere. Of particular note
are nighttime snow scenes, where MVCM underestimates by
17 %; nighttime sea ice, where it underestimates by 24 %;
and areas with permanent snow cover during the night, where
it underestimates by 30 %. The ECM predicts roughly simi-
lar values to the NNCM, with the exception of overestimating
cloud cover during the night over sea ice by 12 %.

TPR=
TP
P

(2)

TNR=
TN
N

(3)

ACC=
TP+TN
P +N

(4)

BACC=
TPR+TNR

2
(5)

In order to evaluate the performance of each cloud mask-
ing model, we calculate the balanced accuracy (BACC;
Eq. 5) of all cloud masks across each surface type examined
in Fig. 3. BACC is the mean of the true-positive rate (TPR;
Eq. 2) and the true-negative rate (TNR; Eq. 3), where TP
is the number of correctly identified clouds, P is the number
of clouds, TN is the number of correctly identified cloud-free
scenes, and N is the number of cloud-free scenes. The advan-
tage of using BACC over ACC (Eq. 4) is that BACC accounts
for class imbalance. One example of class imbalance is day-
time sea ice scenes where the mean CALIOP cloud fraction
is 76 %. A trivial model that predicts 100 % cloud fraction
would obtain 76 % ACC but only 50 % BACC over daytime
sea ice.

BACC values are calculated for both the filtered (Ta-
ble 5) and unfiltered (Table 6) datasets. Table 5 represents
the most reliable collocations, but this means that fractionally
cloudy scenes, cloud edges, and boundary layer clouds are
not well represented. The NNCM reports higher BACC over
every surface type examined compared to both the ECM and
MVCM for the both the filtered and unfiltered datasets. The
most notable improvement from the NNCM occurs over sea
ice, snow, and permanent snow during both day and night.

McNemar’s test (McNemar, 1947) is applied to the NNCM
and the best operational model (either ECM or MVCM) for
each category in both tables, with the null hypothesis that
there is no difference in predictive performance between the
two models. We reject the null hypothesis with a p value less
than 0.001 in every comparison of the NNCM and the best
operational model.

In a few cases, there are instances where one operational
model has a higher TPR or TNR value than the NNCM for
a particular surface type. We find that when either the ECM
or MVCM has a larger TPR value, it is often at the expense
of a very low TNR value (and vice versa for low TPR and
high TNR). One notable example of this is nighttime sea ice,
where the ECM has a TPR of 93.3 % and a TNR of 36.6 % in
the analysis of the unfiltered data (Table 6). Another is night-
time permanent snow cover, where the MVCM has a TPR of
43.6 % and a TNR of 92.2 %. The NNCM often has the most
similar TPR and TNR values. However, this is not always
the case. The largest TPR–TNR disparity for the NNCM is
over nighttime water, where it has a TPR of 93.6 % and a
TNR of 79.2 %. This is a category where the MVCM has
a smaller disparity between TPR and TNR but still overall
lower BACC than the NNCM. Generally when a model has
a large disparity between TPR and TNR, that is an indicator
of severely overpredicting one of the two classes.

Cloud detection ability relies on many factors, includ-
ing the underlying surface and the characteristics of a given
cloud. Clouds with low optical depth may have only a small
impact on the top-of-atmosphere radiation observed by the
imager. Similarly, clouds that are close to the surface, even
if they are optically thick, may be difficult to identify due to
low thermal contrast with the surface. We calculate the TPR
for all collocations as a function of cloud-top pressure and
cloud optical depth as estimated from CALIOP (Fig. 4).

As expected, all cloud masks struggle with the identifica-
tion of clouds that are optically thin and clouds that are close
to the surface. The NNCM has the largest TPR values across
all cloud-top pressures and optical depths, with a few excep-
tions. In the unfiltered dataset during the day, the MVCM
has the highest TPR values for clouds with tops lower than
850 hPa. For the same cloud-top pressures, the NNCM has
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Figure 3. Mean cloud fraction for the 2019 unfiltered testing dataset. Each bar grouping from left to right shows the value from the CALIOP
1 km product, the NNCM, MVCM, and ECM. Time of day and surface categorizations are described in the main text.

Table 5. BACC, TPR, and TNR calculated for each cloud mask over different surfaces during day and night for the filtered dataset. Colloca-
tion counts do not sum to the count listed in the “All” row because sea ice collocations are also counted in the water category, and the two
snow categories are also counted in the land category. Cloud fraction is calculated from the CALIOP collocations.

NNCM ECM MVCM Cloud Number
fraction (million)

BACC TPR TNR BACC TPR TNR BACC TPR TNR

Day global 0.968 0.982 0.954 0.938 0.957 0.918 0.910 0.941 0.879 0.662 2.96
Night global 0.934 0.960 0.908 0.849 0.927 0.772 0.876 0.853 0.900 0.721 2.91
Day water 0.969 0.985 0.952 0.940 0.977 0.902 0.909 0.966 0.852 0.735 1.99
Night water 0.932 0.976 0.888 0.842 0.969 0.715 0.893 0.899 0.887 0.803 1.99
Day land 0.965 0.974 0.956 0.917 0.898 0.936 0.887 0.866 0.908 0.512 0.97
Night land 0.916 0.906 0.927 0.808 0.791 0.825 0.808 0.705 0.912 0.542 0.91
Day sea ice 0.966 0.966 0.966 0.883 0.962 0.804 0.879 0.859 0.899 0.775 0.29
Night sea ice 0.895 0.932 0.859 0.661 0.944 0.379 0.790 0.663 0.917 0.757 0.31
Day permanent snow 0.961 0.964 0.959 0.885 0.840 0.929 0.822 0.739 0.905 0.421 0.30
Night permanent snow 0.863 0.832 0.895 0.701 0.671 0.731 0.694 0.461 0.927 0.578 0.36
Day snow land 0.954 0.961 0.947 0.855 0.859 0.852 0.864 0.825 0.903 0.631 0.16
Night snow land 0.920 0.927 0.913 0.758 0.827 0.688 0.778 0.675 0.880 0.617 0.19

the highest TPR in the filtered dataset. This may indicate that
the MVCM is better able to discriminate small clouds that
are close to the surface. However, when these clouds are re-
moved, the NNCM detects a larger portion of the remain-
ing clouds at all cloud-top pressures. During the night, the
MVCM severely underestimates cloud cover for all cloud-
top pressures lower than roughly 350 hPa. This is consis-
tent with the overall lower mean cloud fraction for nighttime
scenes reported in Fig. 3. When considering optical depth,
the NNCM consistently has a larger TPR for all values dur-
ing the day and night for the filtered dataset. This is also true
for the unfiltered dataset, with one exception where it is com-

petitive with the MVCM at optical depths less than 0.2 during
the day.

There are some differences between Fig. 4 and Tables 5
and 6 that may seem nonintuitive. For example, the ECM has
much higher TPR during the night compared to the MVCM
for all optical depths and all cloud-top pressures. However,
its BACC values for all nighttime collocations are slightly
less than those of the MVCM. In this case it is helpful to
remember that BACC accounts for both clear and cloudy
scenes and weights each class equally. TPR only accounts
for the proportion of clouds correctly identified. The MVCM
results in the TPR analysis of Fig. 4 appear to be to due to its
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Table 6. Same as Table 5, but all metrics are computed for the unfiltered collocations.

NNCM ECM MVCM Cloud Number
fraction (million)

BACC TPR TNR BACC TPR TNR BACC TPR TNR

Day global 0.905 0.934 0.877 0.879 0.906 0.853 0.851 0.902 0.801 0.635 3.63
Night global 0.879 0.920 0.838 0.808 0.889 0.726 0.830 0.816 0.843 0.687 3.46
Day water 0.900 0.937 0.863 0.876 0.930 0.822 0.842 0.935 0.749 0.691 2.48
Night water 0.864 0.936 0.792 0.796 0.930 0.663 0.832 0.860 0.804 0.747 2.45
Day land 0.910 0.925 0.895 0.865 0.835 0.895 0.839 0.807 0.871 0.515 1.16
Night land 0.884 0.870 0.899 0.782 0.754 0.810 0.783 0.671 0.895 0.542 1.01
Day sea ice 0.931 0.941 0.922 0.851 0.944 0.759 0.852 0.832 0.872 0.757 0.31
Night sea ice 0.870 0.906 0.834 0.650 0.933 0.366 0.772 0.640 0.903 0.741 0.33
Day permanent snow 0.930 0.928 0.932 0.854 0.790 0.917 0.795 0.692 0.899 0.430 0.32
Night permanent snow 0.836 0.797 0.875 0.684 0.646 0.722 0.679 0.436 0.922 0.577 0.40
Day snow land 0.905 0.920 0.891 0.818 0.815 0.820 0.827 0.779 0.875 0.619 0.19
Night snow land 0.887 0.890 0.885 0.737 0.797 0.678 0.756 0.641 0.870 0.610 0.21

tendency to underestimate cloud cover during the night over
certain surfaces.

We also investigate the TPR of the three cloud masks as
a function of cloud type (Fig. 5). The cloud types are ob-
tained from the 1 km CALIOP cloud layer product. Over-
all, the NNCM reports the highest TPR for most cloud
types. One exception is the broken cumulus cloud type in
the unfiltered dataset, for which the MVCM has the high-
est TPR. This difference for broken cumulus clouds implies
that the NNCM has relatively worse performance in fraction-
ally cloudy scenes compared to the MVCM. While these dif-
ferences are fairly small, they may be indicative of a much
larger difference in skill due to the relative unreliability of the
unfiltered collocations. When examining the filtered dataset
results for these same clouds, we see that the NNCM has the
highest TPR. This suggests that the NNCM and the ECM are
only better at detecting broken cumulus when they occupy a
substantial horizontal area. When there is considerable fine-
scale spatial variability, such as in the unfiltered dataset, these
results suggest that the MVCM is the most likely to correctly
detect a cloud. Besides the broken cumulus cloud type, the
NNCM has the highest TPR for both the filtered and unfil-
tered collocations. The largest differences are observed when
comparing cloud masks for the transparent cloud types. Al-
most no differences are observed for deep convection, which
is likely optically thick with high-altitude cloud tops.

As discussed previously, large TPR values do not neces-
sarily indicate skillful models since they can be obtained by
overpredicting the positive class. The mean cloud fraction
values from Fig. 3 offer some evidence that this is not the
case for any of these cloud masks in most scenarios. To add
additional context, we plot the receiver operating character-
istic (ROC) curves under various geographic and solar illu-
mination conditions (Fig. 6). The ROC curve of each cloud
mask depicts the TPR and false-positive rate (FPR) over a

varying threshold applied to their class probabilities. The
NNCM and ECM both natively output cloud probabilities.
The MVCM includes a clear-sky confidence estimate which
we take the complement of. An ideal model has a high TPR
with very low FPR. A random classifier lies along the diago-
nal in the middle of a typical ROC plot where TPR is equal
to FPR (not shown due to our choice of x- and y-axis limits).

Figure 6 indicates that the NNCM can obtain higher TPR
for any specified FPR in every scenario examined. This is
true for both the filtered and unfiltered datasets. This result
illustrates that the larger TPR values reported by the NNCM
are not strictly due to the larger mean cloud fraction com-
pared to the MVCM. In addition to Tables 5 and 6, Fig. 6
implies that most of the improvement by the NNCM comes
from the high latitudes during the night, but small improve-
ments can still be observed elsewhere. In every scenario the
unfiltered results are worse than those of the filtered datasets.
The largest discrepancy between the filtered and unfiltered
datasets occurs in the low latitudes over the ocean. This is
likely due to the prevalence of small broken cumulus clouds
that are mostly removed from the unfiltered dataset.

There are a few situations where the actual TPR and FPR
of the models (marked by the colored circles in Fig. 6) are
in nonintuitive locations on the ROC curve. The ECM’s FPR
is larger than 40 % for nighttime water scenes at the middle
and high latitudes (not shown due to our choice of x-axis
limits). We expect that this is related to the high mean cloud
fraction over these regions measured by CALIOP. Given that
the naive Bayesian models behind the ECM require an initial
guess, it is likely that the ECM is relying heavily on climatol-
ogy in regions where cloud masking is difficult from infrared
observations. Overall, it seems that the locations on the ROC
curve of the actual TPR and FPR of the NNCM are related to
the mean cloud fraction of the different regions. This is par-
ticularly true for nighttime scenes, where statistical models
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Figure 4. True-positive rate (TPR) calculated as a function of cloud-top pressure (a, b) and optical depth (c, d) for daytime and nighttime
collocations, respectively. The gray bars represent the fraction of cloudy 1 km CALIOP profiles. Only profiles with non-zero optical depths
are included in (c) and (d).

may rely more heavily on the background mean cloud frac-
tion. More cloudy regions such as middle- and high-latitude
nighttime water (with cloud fractions of roughly 79 %) have
larger FPR. Conversely, nighttime low-latitude land (with a
cloud fraction of 50 %) has a much lower FPR. Applications
that require specific TPR or FPR from a cloud mask could
tune the thresholds applied to the cloud probabilities to reach
their desired values indicated by the ROC curves.

Next we examine the performance as a function of ge-
ographical region. The mean ACC on the filtered testing
dataset is calculated on a 5◦× 5◦ grid (Fig. 7). McNemar’s
test is used to test the differences in model performance be-
tween the NNCM and each operational model at every grid
point. Only points with significant differences in model per-
formance (p values less than 0.001) are shown (Fig. 7d, f).
Overall, the NNCM appears to be the least sensitive to lat-
itude. Most large differences between the NNCM and the
operational models occur over high-latitude land. In particu-
lar, the NNCM shows large improvement (10 %–20 % differ-
ence) over North America, Greenland, northeastern Asia, and
Antarctica over both the MVCM and ECM. Only small im-
provement (0 %–10 % difference) is observed over the ocean
at low and middle latitudes compared to the MVCM. The

NNCM shows mixed results compared to the ECM in trop-
ical ocean. A large contribution to the poor performance of
the MVCM in the Arctic and Antarctic is likely due to the
severe underestimation of cloud cover observed during the
night at high latitudes.

Similarly, we calculate the mean BACC on the same grid
in Fig. 8 using the filtered testing dataset. The BACC values
are somewhat noisier since areas with extremely high cloud
fraction depend largely on the correct identification of a few
cloud-free CALIOP profiles. An example of this is over the
Southern Ocean, where the ECM has a large disparity be-
tween ACC (Fig. 7e) and BACC (Fig. 8e). A slight tendency
to overestimate cloud cover for this region yields very large
differences to the NNCM (Fig. 8f). Besides this example and
some areas where the MVCM improves upon the NNCM in
the Southern Ocean, the results are largely similar to those of
Fig. 7.

All of the previous analyses in this work rely heavily on
an individual cloud mask’s effective definition of a cloud. A
difficulty with comparing different cloud masks is that the
definition of a cloud is somewhat subjective at low optical
depths and perhaps depends on the particular application. It is
plausible that each cloud mask may be more effective at dis-
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Figure 5. The true-positive rate (TPR) for various CALIOP cloud feature types from the 1 km CALIOP cloud layer product. The order shown
in the legend indicates the ordering of the bars in each grouping.

criminating clouds around a certain optical depth threshold.
Thus, a reasonable argument based on the reported global
mean cloud fractions in Fig. 3 and the BACC values in Ta-
bles 5 and 6 is that the MVCM, due to its lower global mean
cloud fraction, may only be sensitive to clouds with slightly
larger optical depths compared to the NNCM and ECM.

In order to further probe the differences in these cloud
masks, we recalculate BACC after removing clouds below
an increasing lower optical depth threshold from our testing
dataset (Fig. 9). The aim of this analysis is to understand how
the optical depth of a cloud impacts its detectability by each
approach and identify if certain cloud masks perform better
if we remove clouds with trivially low optical depths. Even
if two cloud masks are developed around slightly different
optical-depth-based definitions of a cloud, we can reasonably
expect their BACC values to converge when clouds with op-
tical depths above both thresholds are removed.

As expected, when optically thin clouds are removed from
our testing dataset, the BACC of all the cloud masks is im-
proved. Consistent with Fig. 6, the filtered dataset has higher
BACC for all scenarios. The NNCM reports the highest
BACC across all land–water, day–night, and latitude com-
binations examined, with a few key exceptions. In low-
latitude nighttime water scenes (Fig. 9j), the ECM has larger
BACC for every cloud optical depth threshold in the unfil-

tered dataset but more similar values in the filtered dataset.
In daytime land scenes at low latitudes (Fig. 9a), the ECM
has larger BACC values above an optical depth threshold of
roughly 0.4 for the unfiltered dataset but has lower BACC
values at most optical depths for the filtered dataset. The fact
that the NNCM BACC values are still equal to or larger than
the other cloud masks for high-optical-depth clouds in most
scenarios suggests that the NNCM is overall more skillful
in cloud detection regardless of a reasonable optical-depth-
based definition of a cloud. Because of this, we can infer that
improvements in BACC by the NNCM in Tables 5 and 6 are
not solely due to discrepancies in the detection of optically
thin clouds.

It may be initially nonintuitive why some of the curves in
Fig. 9 vary so little with the removal of optically thin clouds.
This is partially due to the choice of BACC as our primary
performance metric, but it is also representative of the fact
that cloud optical depth is not the only variable controlling
the detectability of a cloud. Thermal contrast with the sur-
face also plays a significant role. Often, this can be analyzed
by examining performance of a given cloud mask as a func-
tion of both optical depth and cloud-top height. However, this
may be misleading where clouds in inversion layers may be
warmer than the underlying surface.
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Figure 6. Receiver operating characteristic (ROC) curves for all three cloud masks. The text above each subplot indicates the subset of
collocations for which the curves are plotted. Note that the x- and y-axis limits are somewhat atypical for ROC curve plots and are chosen
here to emphasize the differences between the masks and different datasets. The TPR and FPR for the model using the standard threshold of
0.5 for the neural network and ECM as well as the integer cloud mask for MVCM are also shown with similarly colored circles.

To examine the approximate impact of thermal contrast
with the surface, we calculate ACC as a function of the dif-
ference between the VIIRS M15 measurement (10.8 µm) and
the surface temperature obtained from Global Forecasting
System (GFS) 12 h forecasts made every 6 h (Fig. 10). These
surface temperatures are matched to VIIRS observations by
linearly interpolating in space and time from the preceding
and subsequent GFS forecasts. Given the spatial and tempo-
ral resolution of the GFS products, these should only be in-
terpreted as very rough estimates of the surface temperature.
The differences are calculated after the removal of clouds

below two different cloud optical depth thresholds: 0.3 and
3.0. As expected, all cloud masks perform well where the
10.8 µm measurement is significantly colder than the sur-
face. The performance of all models decreases as the VIIRS
10.8 µm brightness temperatures become more similar to or
larger than the surface temperature. Figure 10b illustrates that
even for optically thick clouds, the performance of both oper-
ational models is largely dependent on thermal contrast with
the surface. The NNCM appears to be more robust to scenes
where the 10.8 µm measurement is similar to or warmer than
the surface. This is surprising given that the NNCM is not
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Figure 7. Geographic comparison of the ACC between the three cloud masks on the filtered testing dataset. Each grid cell is 5◦ latitude by
5◦ longitude. The gap in coverage over South America is due to the removal of low-energy laser shots from the CALIOP datasets. Cells with
fewer than 100 collocations are not shown in (a) or (c)–(f). Differences are only shown where determined significant by McNemar’s test with
p values less than 0.001.

supplied with any information about surface characteristics
other than latitude and whether it is viewing a land or water
surface.

4.2 Uncertainty assessment

Class probabilities produced by machine learning models are
often used to obtain uncertainty estimates. While these val-
ues are typically not the same as true uncertainties, they can
be useful for interpreting model output. For binary classifi-
cation models, an approximation for uncertainty can be usu-
ally obtained by examining the distance from the decision
threshold. These uncertainty estimates are generally unreli-
able when predictions are made on inputs that are outside
the distribution of the original training dataset. With this
significant caveat in mind, we calculate the ACC with re-
spect to the cloud probabilities of the NNCM and ECM as
well as the clear-sky confidence from the MVCM (Fig. 11).
A model with a cloud probability threshold of 0.5 is per-
fectly calibrated if its predictions lie along the line where
ACC=min (ŷ,1− ŷ), where ŷ is the scalar-predicted cloud
probability. The MVCM appears to follow a different con-
vention, with a decision threshold of 0.95 since that is where

the minimum accuracy is reached with respect to the MVCM
clear-sky confidence.

Overall, the NNCM appears to be the best calibrated,
with the ACC on the unfiltered collocations closely follow-
ing the expected values from a perfectly calibrated model.
It is slightly overconfident when predicting cloud probabili-
ties for clear-sky cases in the range of 0.1 to 0.4. The ECM
appears to be overconfident for the majority of cloud proba-
bility values. The assessment of MVCM accuracy as a func-
tion of clear-sky confidence is somewhat noisy but could
be attributed to the extremely low number of values in the
calculated intervals. Despite the minor differences, all cloud
masks examined here have accuracies that vary in an intuitive
way with their predicted cloudy or clear-sky probability val-
ues. The differences among them can be mostly attributed to
how well their class probabilities correspond to a particular
level of accuracy. As a result, we expect that these values can
be used to convey the relative uncertainty in estimating which
imager pixels the CALIOP cloud products might determine
to be cloudy. However, it remains to be demonstrated if ac-
curate uncertainties in predicting CALIOP cloud detection
translate well to accurate uncertainties outside of CALIOP
collocations.
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Figure 8. Same as Fig. 7 but all using BACC instead of ACC. Panel (b) has been replaced with the 1 km CALIOP cloud fraction computed
from the VIIRS and CALIOP collocations.

4.3 Cloud detection consistency

Evidenced by much of the previous analysis, the detectability
of a cloudy pixel by a cloud masking algorithm can depend
on a number of factors, including surface characteristics, so-
lar illumination, cloud optical depth, cloud-top height, ther-
mal contrast with the surface, and the algorithm itself. The
variation in BACC, ACC, TPR, and FPR across these con-
ditions suggests that clouds of a fixed optical depth may be
more likely to be detected over certain surface conditions or
time of day. This is potentially problematic and conducive
to spatial and temporal artifacts in cloud amount analyses.
Consider, for example, a cloud of fixed low optical depth
advected sequentially over a cold land surface, a relatively
warm ocean surface, and sea ice. Regardless of the overall
accuracy of a cloud mask or effective definition of a cloudy
scene, an algorithm with a varying TPR over these surface
types could produce spatial artifacts related to these surfaces.
Considering that solar illumination may change during this
time further complicates this example and could produce un-
realistic cloud amount variability through time. In many sce-
narios, this is unavoidable due to the limitations of the satel-
lite instrument. However, we argue that a desirable quality
of a cloud mask is consistency in TPR across varying sur-
face types and solar illumination conditions and that, ide-
ally, cloud detection should be dependent on characteristics

of the cloud and not characteristics of the surface or solar
illumination. We expect that examining TPR differences be-
tween these conditions at fixed cloud optical depths could
help reveal artificial spatial and temporal variability in cloud
amount analyses.

To investigate this concern, we calculate the TPR for
clouds above an increasing optical depth threshold. Then, we
find the difference in TPR across daytime, nighttime, land,
and water for three latitude bands (Fig. 12). An important
consideration for Fig. 12 is that a cloud mask can have low
accuracy but also low TPR differences if it makes consis-
tent predictions with respect to cloud optical depth across the
conditions examined.

In general, as the lower optical depth threshold increases,
TPR differences decrease for all cloud masks with a few ex-
ceptions. The NNCM has TPR differences less than or equal
to 5 % for all scenarios examined except for the difference
between nighttime water and nighttime land and the differ-
ence between daytime land and nighttime land at the high
latitudes. In both instances, the differences converge to less
than 5 % at optical depths greater than 1. All cloud masks
struggle with consistency at high latitudes and for optically
thin clouds.

The ECM shows strong consistency in TPR between day-
time and nighttime water at all latitudes for both datasets.
However, it struggles in many other scenarios. In Fig. 12d
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Figure 9. Balanced accuracy (BACC) recalculated after removing clouds below a certain cloud optical depth (COD) threshold. Tick marks
on the neural network lines indicate significant differences in performance between the neural network and the best operational model using
McNemar’s test with p values less than 0.001. Note that the y-axis limits are different for (l) compared to the other subplots.

(low-latitude nighttime water and nighttime land), the ECM
is the only mask with differences greater than 5 %. In Fig. 12f
(high-latitude nighttime water and nighttime land) the ECM
has the largest TPR difference observed of roughly 28 % for
optically thin clouds.

The MVCM has the largest TPR differences in 9 out of the
12 scenarios examined in Fig. 12. In a few cases (Fig. 12a,
b, g) the large TPR differences converge to 0 at larger op-
tical depths. However, in other cases, the large differences
remain even for optically thick clouds. This is especially true
for daytime–nighttime consistency over both land and wa-
ter at high latitudes (Fig. 12i, l), where differences are larger
than 10 % for clouds with optical depths greater than 1.0.

4.4 Regional analysis

In order to give some context to the largest differences we
have observed when validating with CALIOP collocations,
we perform a limited regional analysis comparing the NNCM
and the MVCM. We focus this analysis on Greenland be-
cause it is one of the worst performing regions for both
masks. We process every S-NPP VIIRS scene in 2019 where
the nadir VIIRS ground track comes within the bounding
box of latitudes 60 to 80◦ N and longitudes 70 to 20◦W.
This results in a total of 4412 6 min VIIRS scenes. Due to
the large number of scenes, we additionally subsample every
fifth pixel from every fifth scan line. For the NNCM and the
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Figure 10. ACC calculated as a function of thermal contrast with
the surface approximated by the difference between VIIRS M15
(10.8 µm) and surface temperature in Kelvin. Each subplot repre-
sents a set of collocations consisting of clear-sky scenes and cloudy
scenes with optical depths greater than 0.3 (a) and 3.0 (b).

MVCM we calculate the mean cloud fraction for the region
58 to 84◦ N and 80 to 10◦W using a grid size of 0.5◦ latitude
and 1◦ longitude (Fig. 13a, b).

Consistent with the CALIOP validation, we observe
large differences over the Greenland land mass (Fig. 13.c).
The NNCM predicts 10 %–25 % higher cloud fraction over
Greenland, varying with exact location. Differences over the
ocean to the southeast of Greenland are negative and fairly
small. However, the ocean to the north and west of Greenland
have large positive differences similar to those over Green-
land itself. Based on the spatial characteristics of the mean
MVCM cloud fraction over the ocean, we hypothesize that
these differences may be a result of sea ice cover. A simi-
lar result was found previously in Liu et al. (2010), where
MODIS cloud detection errors related to the presence of sea
ice were suggested to contribute to large errors in cloud frac-
tion trends.

Focused regional comparisons between imagers and
CALIOP can be difficult due to the relative sparsity of
CALIOP observations in small geographical regions. A
domain-wide averaged cloud fraction comparison between
the two imager cloud masks and CALIOP is subject to a large
amount of error due to the differences in spatial sampling

and observation times. We calculate a domain-wide average
of cloud fraction for CALIOP and the two cloud masks and
plot the 31 d moving average as a function of time (Fig. 13d).
To account for some of the differences in sampling, this av-
erage only includes grid points from the NNCM and MVCM
for which CALIOP has sampled on the same day. This ef-
fectively removes the impact of differences in spatial sam-
pling but ignores differences in temporal sampling. Thus, we
should still not expect either the MVCM or the NNCM to
follow the CALIOP 1 km or 5 km products closely. When
calculating the mean cloud fraction, individual values on the
regular latitude–longitude grid are weighted to account for
differences in surface area between locations.

The largest differences occur in Northern Hemisphere
winter, with better agreement between the MVCM and
NNCM occurring during Northern Hemisphere summer.
This suggests that the MVCM’s tendency to underestimate
cloud cover during conditions with no solar illumination
heavily contributes to the spatial differences observed in
Fig. 13c. Similarly, the magnitude of the seasonal cycle in the
MVCM is likely exaggerated due to variation in solar zenith
angle throughout the year. Both cloud masks also show very
different shapes to the seasonal cycle even when ignoring
the overall differences in mean cloud fraction. Despite dif-
ferences in temporal sampling, the NNCM shows somewhat
similar variability to both CALIOP products. Overall, the
NNCM shows mean cloud fractions more similar to the 5 km
CALIOP product despite being trained with labels from the
1 km product. This is not a surprising result since the NNCM
is a statistical algorithm and is incentivized to predict the
majority class (cloudy) in uncertain conditions when both
classes are given equal weight. The 5 km CALIOP prod-
uct likely has a larger mean cloud fraction due to its ability
to detect clouds with low optical depths. Of the two cloud
masks, the NNCM appears to give a more realistic assess-
ment of cloud cover variability in this analysis and more
closely aligns with that of CALIOP.

5 Discussion

There are few common themes in much of the analysis done
in Sect. 4. The BACC calculated over global averages of a
few surface types suggests that the NNCM is better at dis-
criminating cloudy from cloud-free scenes in most scenarios.
Further analysis shows that a large majority of this improve-
ment comes from collocations located at the middle and high
latitudes. According to the CALIOP collocations, the ECM
and NNCM cloud masks appear relatively comparable over
low-latitude land and ocean, with the MVCM trailing slightly
behind both in this region. The ECM appears slightly more
capable of identifying low-level small clouds in the unfil-
tered dataset in low-latitude nighttime scenes over water. The
NNCM’s improvement at higher latitudes raises some ques-
tions about its dependence on latitude, particularly since it is
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Figure 11. Uncertainty assessments for (a) the NNCM, (b) the MVCM, and (c) the ECM. ACC values (left y axis) for cloud probability and
clear-sky confidence values are calculated for bins of size 0.01. For (a) and (c) a perfectly calibrated model is plotted with the dashed gray
line (see main text). Orange shading indicates the 99.9 % confidence interval. Gray bars indicate the fraction of collocations falling within
each bin of width 0.01.

Figure 12. TPR differences over combinations of land–water and day–night conditions. The specific TPR difference and latitude are labeled
at the top of each subplot. Note that the y-axis limits are different for (f) and (l).
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Figure 13. Regional analysis of cloud fraction over Greenland. Panels (a) and (b) illustrate the mean cloud fraction for the NNCM and the
MVCM for all selected VIIRS scenes in 2019. Panel (c) is the difference between (a) and (b). Panel (d) is the domain-wide 31 d moving
average of grid points spatially matched with CALIOP (see main text for details).

the only model that uses this information directly in its in-
puts. To test this dependency, we retrained and evaluated the
NNCM after removing latitude, solar zenith angle, sun glint
angle, and the land–water mask. The largest change in BACC
was a decrease of −0.5 % over nighttime water, and all other
surfaces changed by less than 0.2 %. Considering these re-
sults, it is probable that the NNCM depends on latitudinal
mean cloudiness in some capacity over water (similar to the
ECM over the Southern Ocean). However, it is difficult to as-
sess how this information is utilized and whether it is serving
a purpose similar to that of a climatological first guess or if
it is changing the usage of other observations.

Despite training using an unfiltered dataset that contains
fractionally cloudy pixels identified by CALIOP, the NNCM
still struggles in fractionally cloudy scenes. This is likely
due to a combination of noisy labels from CALIOP in these
conditions and the low contrast with the underlying and sur-
rounding surface. Broken cloudiness is a consistent problem
in using CALIOP as a reference. These clouds pose a signif-
icant challenge to cloud masking in general but are partic-
ularly difficult to handle when the corresponding CALIOP

profile is not fully representative of its collocated imager
pixel. Future efforts to provide high-quality, fine-resolution,
globally distributed cloud labels could prove extremely use-
ful to solve these issues. Our choice of training on an un-
filtered collocation dataset was made to avoid any bias with
regards to the spatial characteristics of cloud cover. We ex-
pect that filtering out spatially variable clouds from the train-
ing dataset would result in an even worse characterization
of small clouds by the NNCM. Despite training on a rela-
tively unreliable collection of CALIOP collocations, we re-
port much higher BACC for the vast majority of scenarios,
especially in homogeneously cloudy scenes represented by
the filtered testing dataset.

It should also be noted that the decision to use CALIOP
as a reference and the lack of filtering applied to the train-
ing dataset affect how the NNCM uncertainty estimates can
be interpreted. Reported uncertainties by the NNCM should
not be purely attributed to the ability of the model to detect
clouds based on spectral variability alone. Since we include
neighboring pixels in the inputs, spatial variation in VIIRS
channels is also a contributor. Additionally, these uncertainty
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estimates are also a function of how representative CALIOP
profiles typically are of a given pixel. This suggests that un-
certainties associated with regions of broken clouds are ele-
vated due to the difficulty of obtaining mutually representa-
tive collocations between CALIOP and VIIRS.

There are many areas for improvement in the NNCM ap-
proach. For instance, we included all 16 moderate-resolution
channels in our algorithm. It is plausible that some chan-
nels are not especially useful in cloud detection, or the use-
ful information they provide to the task is redundant among
other channels. Pruning inputs to the model could ultimately
speed up processing and could reduce the likelihood of over-
fitting. Future work could investigate the benefit of includ-
ing the 375 m I-band measurements from VIIRS. We did not
include I-band measurements since obtaining these observa-
tions more than doubled the processing time for creating the
collocation dataset, training the model, and making predic-
tions. Sub-pixel information from the I-band measurements
could likely help identify small cloud features. However, we
expect that the poor representation of small clouds by the
CALIOP/VIIRS collocations would severely limit the useful-
ness of their incorporation. Further work is needed in order
to properly assess how I-band measurements could be used
to maximize their value in cloud property algorithms trained
with CALIOP.

Despite the large increase in BACC made by our NNCM
approach, there is still room for improvement, particularly
during the night. One potential solution might be the in-
corporation of VIIRS/CrIS fusion channels into the inputs
of the final NNCM model. Similar to the usage of I-band
measurements, this may increase the prediction time. How-
ever, the spectral regions covered by the I-bands are already
well represented in the moderate-resolution channels. The
VIIRS/CrIS fusion channels represent spectral regions not
covered in the native VIIRS channels, such as those with sig-
nificant CO2 (MODIS bands 33–36), H2O (MODIS bands 27
and 28), and O3 (MODIS band 30) absorption. Thus, the in-
crease in cloud detection accuracy may be worth the trade-off
of increased prediction time associated with their inclusion.
However, an added difficulty is that the fusion channel esti-
mates are made from relatively coarse-resolution CrIS chan-
nels. This could negatively impact cloud detection for frac-
tionally cloudy pixels to an even greater degree.

Our approach currently includes very little ancillary data:
only a VIIRS-derived binary land–water mask. The MVCM
uses several, including surface temperatures, sea ice, snow
cover, and normalized difference vegetation index maps. The
ECM also includes surface temperatures, sea ice, snow cover,
tropopause temperatures, and clear-sky estimates of many
channels using radiative transfer models. Anecdotally, we
notice that some spatial artifacts we have observed in the two
operational cloud masks appear to be related to the relatively
coarse resolution of the ancillary datasets. Early experiments
with the neural network lead us to believe that including sur-
face temperature increased the frequency of spatial artifacts

in its output. This motivated our decision to initially not in-
clude information such as surface temperatures in our ap-
proach even though it led to substantial increases in cloud
detection performance estimated by CALIOP collocations.
The relatively coarse resolution of the ancillary data might
cause issues around boundaries of surface types or around
large horizontal gradients in surface temperature. This mis-
characterization of the surface condition could result in errors
in cloud detection if a given model is highly dependent on
this information. This is potentially one of the explanations
for the disparity in performance in instances of low thermal
contrast with the surface. We leave it to future work to inves-
tigate how to include coarse-resolution ancillary data in the
neural network without increasing the prevalence of spatial
artifacts in cloud masking output.

For all scenarios examined in Fig. 12 we conclude that the
NNCM is the most consistent in identifying clouds across
various geographical, solar illumination, and surface condi-
tions while controlling for cloud optical depth. There are sev-
eral reasons why the NNCM model might be successful in
this regard. The ECM and MVCM both apply different tests
based on surface condition and solar zenith angle. The ECM,
for example, is a collection of naive Bayesian models trained
for different surface types. This is a very intuitive approach
but in practice requires partitioning collocation datasets ac-
cording to surface type and reduces the number of colloca-
tions that can be used for training each model. Similarly the
MVCM uses different decision pathways and restricts or re-
quires usage of certain inputs accordingly. We hypothesize
that training only a single model (rather than multiple) and
instead providing the land–water mask and solar zenith angle
as inputs has contributed to its consistency in cloud detection
under these varying conditions.

In one of the worst-performing regions for all cloud masks,
we observe very substantial differences in mean cloud frac-
tion for 2019 across both space and time. These results
demonstrate how differences in TPR of a cloud mask over
varying surface and illumination conditions could potentially
contribute to very different spatial and temporal variability.
Because of this, we argue that TPR differences over varying
surface and illumination conditions could be useful metrics
for identifying such issues in cloud mask development and
assessment. We suspect that this is a particularly important
consideration for the use of cloud masking approaches in cli-
mate records. For example, annual sea ice loss or trends in
seasonal snow cover could produce erroneous trends in cloud
cover if a given cloud mask’s TPR differs significantly to that
of ice-free ocean or snow-free land.

We note several potential caveats in the assessment of the
NNCM in addition to issues with fractional cloudiness. One
clear limitation with using CALIOP as a source for labels is
the relatively narrow range of sensor viewing angle and solar
illumination combinations. We examined one specific exam-
ple of this in sun glint and have limited but not completely
removed its adverse impact on cloud detection using pseudo-
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labeling. One disadvantage of the pseudo-labeling approach
is that the associated uncertainty estimates lose much of their
meaning in domains where we exclusively train on pseudo-
labels. We have attempted to limit the impact of this issue by
training the NNCM to estimate the class probabilities pro-
duced by the pseudo-labeling model and not the predicted
class labels themselves. This approach appears to be suc-
cessful in preventing severe over-clouding of sun glint re-
gions, but it can only be expected to perform as well as
a model that uses infrared observations exclusively. There
are very specific conditions in which the two operational
masks outperform the NNCM, and it may be possible to use
MVCM or ECM predictions as pseudo-labels to address de-
ficiencies in the NNCM if these conditions can be identified
without the use of CALIOP. We have not evaluated how the
NNCM performs specifically in cloud-free scenes with high
aerosol loading in this analysis. We expect that the ability for
CALIOP to distinguish cloud from aerosol layers could add
another layer of difficulty in addition to the ability of VIIRS
observations to distinguish these features.

One source of bias in this assessment is our choice of using
the 1 km CALIOP cloud layer products in the vast majority
of our comparisons. It is possible that some optically thin
clouds that are detected in the 5 km CALIOP product but are
missed in the 1 km product could be correctly identified by
the imager cloud masks. This is plausible in conditions such
as daytime low-latitude ocean where a thin cirrus cloud has
large thermal contrast with the surface. We have not investi-
gated this specific concern in this work due to the difficulty
of ensuring mutually representative collocations between the
5 km CALIOP product and the 750 m observations. It is pos-
sible that the slight overestimation in daytime mean cloud
fraction by the MVCM (Fig. 3) could be due to the detection
of clouds missed by the 1 km CALIOP product. For purely
statistical approaches, like the NNCM, it is difficult to sepa-
rate this possibility from that of overpredicting cloud fraction
simply because cloudy scenes are more common than cloud-
free.

6 Conclusions

In this work, we examine the performance of a neural net-
work cloud mask (NNCM) for VIIRS that is trained with
coincident CALIOP observations and compared it with two
operational cloud masks. Both the MVCM and ECM appear
to be slightly better at identifying small broken clouds than
the NNCM. However, the NNCM outperforms both opera-
tional masks in most other conditions. We observe particu-
larly large improvement at the middle and high latitudes dur-
ing the night where the operational masks missed substantial
fractions of optically thick clouds that were correctly identi-
fied by the NNCM. We have ruled out the possibility that the
improvement is due to disagreements in each approach’s ef-
fective definition of a cloud. Furthermore, we find that uncer-

tainty estimates from the NNCM are well calibrated and ap-
propriately represent the ability to estimate cloudy or cloud-
free labels from CALIOP. When examining differences in
true-positive rate, we find that the NNCM is the most con-
sistent in identifying clouds of a fixed optical depth when
considering day–night and land–water conditions. A regional
analysis over Greenland for 2019 confirms that such differ-
ences could contribute to vastly different assessments of the
spatial and temporal variability in cloud cover over certain
regions. Some issues with the global representativeness of
VIIRS and CALIOP collocations are successfully mitigated
with a simple semi-supervised learning approach, but more
work is needed in improving detection of fractionally cloudy
pixels by the NNCM.
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